Integral Menger curvature for surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularizing and self-avoidance effects of integral Menger curvature

We investigate geometric curvature energies on closed curves involving integral versions of the Menger curvature. In particular, we prove geometric variants of Morrey-Sobolev and Morrey-space imbedding theorems, which may be viewed as counterparts to respective results on one-dimensional sets in the context of harmonic analysis. Mathematics Subject Classification (2010): 28A75 (primary); 53A04,...

متن کامل

Menger curvature and rectifiability

E3 c(x, y, z)dH(x)dH(y)dH(z) where H1 is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z), that is, following the terminology of [6], the Menger curvature of the triple (x, y, z). A Borel set E ⊂ Rn is said to be “purely unrectifiable” if for any Lipschitz function γ : R → Rn, H1(E ∩ γ(R)) = 0 whereas it is said to ...

متن کامل

Menger Curvature and Rectifiability 833

where H1 is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z), that is, following the terminology of [6], the Menger curvature of the triple (x, y, z). A Borel set E ⊂ Rn is said to be “purely unrectifiable” if for any Lipschitz function γ : R → Rn, H1(E ∩ γ(R)) = 0 whereas it is said to be rectifiable if there exist...

متن کامل

Prescribing Integral Curvature Equation

In this paper we formulate new curvature functions on Sn via integral operators. For certain even orders, these curvature functions are equivalent to the classic curvature functions defined via differential operators, but not for all even orders. Existence result for antipodally symmetric prescribed curvature functions on Sn is obtained. As a corollary, the existence of a conformal metric for a...

متن کامل

Minimizing the Squared Mean Curvature Integral for Surfaces in Space Forms

We minimize a discrete version of the squared mean curvature integral for polyhedral surfaces in three-space using Brakke’s Surface Evolver. Our experimental results support the conjecture that the smooth minimizers exist for each genus and are stereographic projections of certain minimal surfaces in the three-sphere.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2011

ISSN: 0001-8708

DOI: 10.1016/j.aim.2010.09.016